Asymptotic normality of Hill Estimator for truncated data

نویسندگان

  • Arijit Chakrabarty
  • ARIJIT CHAKRABARTY
  • A. CHAKRABARTY
چکیده

The problem of estimating the tail index from truncated data is addressed in ?. In that paper, a sample based (and hence random) choice of k is suggested, and it is shown that the choice leads to a consistent estimator of the inverse of the tail index. In this paper, the second order behavior of the Hill estimator with that choice of k is studied, under some additional assumptions. In the untruncated situation, it is well known that asymptotic normality of the Hill estimator follows from the assumption of second order regular variation of the underlying distribution. Motivated by this, we show the same in the truncated case in light of the second order regular variation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data

Kernel density estimators are the basic tools for density estimation in non-parametric statistics.  The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in  which  the  bandwidth  is varied depending on the location of the sample points. In this paper‎, we  initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...

متن کامل

Asymptotic Behaviors of the Lorenz Curve for Left Truncated and Dependent Data

The purpose of this paper is to provide some asymptotic results for nonparametric estimator of the Lorenz curve and Lorenz process for the case in which data are assumed to be strong mixing subject to random left truncation. First, we show that nonparametric estimator of the Lorenz curve is uniformly strongly consistent for the associated Lorenz curve. Also, a strong Gaussian approximation for ...

متن کامل

A Lynden-Bell integral estimator for extremes of randomly truncated data

This work deals with the estimation of the extreme value index and extreme quantiles for heavy tailed data, randomly right truncated by another heavy tailed variable. Under mild assumptions and the condition that the truncated variable is less heavy-tailed than the truncating variable, asymptotic normality is proved for both estimators. The proposed estimator of the extreme value index is an ad...

متن کامل

Some Asymptotic Results of Kernel Density Estimator in Length-Biased Sampling

In this paper, we prove the strong uniform consistency and asymptotic normality of the kernel density estimator proposed by Jones [12] for length-biased data.The approach is based on the invariance principle for the empirical processes proved by Horváth [10]. All simulations are drawn for different cases to demonstrate both, consistency and asymptotic normality and the method is illustrated by ...

متن کامل

On the parametric maximum likelihood estimator for independent but non-identically distributed observations with application to truncated data

We investigate the parametric maximum likelihood estimator for truncated data when the truncation value is different according to the observed individual or item. We extend Lehmann’s proof (1983) of the asymptotic properties of the parametric maximum likelihood estimator in the case of independent non-identically distributed observations. Two cases are considered: either the number of distinct ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012